勾股定理证明小论文(精选22篇)

时间:2024-01-03 05:53:12 作者:文锋 毕业论文

通过阅读范文,我们可以学习到不同类型文章的写作方法和结构。范文范本是作者经过较长时间的积累和思考所写成的精品作品。

勾股定理证明小论文[模版]

在第三单元中,我们学习了有关勾股定理的一些数学知识以及勾股定理的简单运用。其实,这个几乎家喻户晓的简单定力,还有许多不为人知的历史故事。

毕达哥拉斯是一位古希腊的数学家,在数学方面颇有造诣。传说他与勾股定理之间,也有一个小故事。毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着是正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言。这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形磁砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和数之间的关系,于是拿了画笔并且蹲在地板上,选了一块磁砖以它的对角线ab为边画一个正方形,他发现这个正方形面积恰好等于两块磁砖的面积和。他很好奇,于是再以两块磁砖拼成的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块磁砖的面积,也就是以两股为边作正方形面积之和。至此毕达哥拉斯作了大胆的假设:任何直角三角形,其斜边的平方恰好等于另两边平方之和。那一顿饭,这位古希腊数学大师,视线都一直没有离开地面。

与勾股定理有关的故事还有许多,关于究竟是谁最先发现勾股定理,人们也都怀有不同的看法。我国古代的赵爽与刘徽也都对这一定理进行过深入的研究,“弦图”“青朱出入图”便是他们用来证明勾股定理的方法。美国总统加菲尔德也通过自己的智慧证明了勾股定理,这足以能体现出数学的魅力。相信在未来,人们关于勾股定理会有更深入的讨论与研究。

勾股定理的小论文

自“科教兴国”战略实施多年以来,我国的教育体制已逐渐从应试教育向素质教育转变。然而,这种转变的有效性仍值得检验。素质教育的本质就是以培养、激发学生的创新思维为目的,以特色的教学模式为手段,调动学生的积极思维欲望,不拘一格地带动学生对知识敢想、多想,以达到学生更深层次地理解所学知识,使其真正转变为自己的知识,并能在以后的学习、生活中加以利用。就数学而言,数学课堂教学研究一直是国内外教育改革的焦点之一,课堂被认为是学生构建知识,老师组织学习最重要的.现实环境,它被喻为“人世间最复杂的实验室之一”。作为一名初中数学教育工作者,如何能在课堂中带动学生的听课积极性,使学生对我们所教内容产生浓厚的兴趣,而不认为是教条式的填鸭,显得至关重要。勾股定理是中国几何的根源,是中华数学的精髓。在此,作者以初中二年级数学课程“勾股定理”作为课程实践案例,进行了一次简单尝试。

笔者改变了以往“勾股定理”教学中照书念的本本模式,而是不惜用去10分钟时间给学生讲讲勾股定理的起源。在引领学生将书翻到勾股定理章节后,告诉学生,大家书本上看到的这位毕达哥拉斯,是公元前四百多年前发现了直角三角形的三边关系,而最早有关该定理的文字著作出自我国商朝约公元前200年左右的《周髀算经》,由商高发现。并在三国时代由赵爽对其做出详细注释,又给出了另外一个证明引,我们的祖先是不是也很智慧呢?此时,全班几乎所有学生目光都从书本移开,极为专注地看着笔者,眼神中带着强烈的求知欲望。笔者转而引导学生开始上课,每个孩子都带着浓厚的兴趣想要学好我们祖先发现的伟大定理。

通过带领学生从看图18.1-2中快速计算正方形abc、a’b’c’面积,并展开猜想,引出“勾股定理”的命题。随后,将学生分组,一组4人,给每组分发下去4个全等的直角三角形纸板,短直角边标有a(勾)字样,长直角边和斜边分别标有b(股)及c(弦)。让每一位同学都在仔细观察“赵爽弦图”的同时,用纸板摆出“赵爽弦图”,使学生对赵爽的证明过程有一个初步形象的直观认识,然后给学生做出赵爽对“勾股定理”的详细推导。学生们在小组参与弦图旋转、摆放的过程中,个个乐此不疲,相互提醒。虽然,教室中看似多了点吵闹,但笔者发现,在学生眼、手、口并用的实际操作中,勾股定理的学习少了许多课本填鸭式的枯燥,换之而来的是学生们积极的参与、激烈的讨论和更为浓厚的兴趣。

在定理证出后,笔者立即向学生提问:谁能给出快速说出更多的均以整数为边的勾股数的方法?底下同学开始议论,一位同学的回答引得全班哄堂大笑,上网!笔者也忍俊不禁,告诉他很会利用现代高科技工具,算是一项能力,但不是独立解决该问题的最佳办法。此时,已有学生说出6、8、10,9、12、15等等。笔者微笑点头肯定,整数勾股数三遍等量放大比例同样也是勾股数,三边不可约分的整数勾股数是以质数为最短边,并且只有一组以其为最短边的勾股数。至于原因,不过该内容已超纲,有兴趣的同学可以课下研究、探讨。

重点内容“勾股定理”授课完毕,继而启发学生对“勾股定理”的实际应用。学生通过做门框、湖水等实际应用题对勾股定理的实用性有了更加现实的认识,也有了数学建模的简单概念。邻近下课时,给学生布置了家庭作业,让学生用一个礼拜的时间观察生活中有关勾股定理应用的现实例子,并加以简单介绍。之后腾出一节课给学生自由发挥,介绍自己对勾股定理的实践观察,学生们积极上台发言,表达欲望强烈,在其他同学获取知识的同时,讲述的同学也在大家肯定的掌声中增强了自信心,课外拓展取得了很好的效果。

固定不变的是已有的知识,持续发展进步的是我们的思维。初中学生正处在一个思维活跃的阶段,在初中数学课堂基本理论的教学中,适时带入一些生动灵活的素材,如讲述所教内容的历史小故事,团体讨论、课外拓展等,培养起学生自动自发的学习意识,积极思考的求知欲望和举一反三的实践能力,会使我们的教学质量得到较大幅度的提高,培养出更多的勤思考、爱动脑和成绩好的优秀学子。

勾股定理小论文

勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

据此,制定教学目标如下:

3、培养学生观察、比较、分析、推理的能力。

4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

二、教法和学法。

教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:

1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

三、教学程序。

本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:

(一)创设情境以古引新。

1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形。如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。

2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

3、板书课题,出示学习目标。

(二)初步感知理解教材。

教师指导学生自学教材,通过自学感悟理解新知。体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。

(三)质疑解难讨论归纳。

1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。

2、教师引导学生按照要求进行拼图,观察并分析;

(1)这两个图形有什么特点?

(2)你能写出这两个图形的面积吗?

(3)如何运用勾股定理?是否还有其他形式?

这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流;先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨。最后,师生共同归纳,形成一致意见,最终解决疑难。

(四)巩固练习强化提高。

1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。

2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。

(五)归纳总结练习反馈。

引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。

本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。

将本文的word文档下载到电脑,方便收藏和打印。

勾股定理小论文

摘要:勾股定理又名商高定理,也名毕达哥拉斯定理。从两千多年前至今都有人在研究,其证明方法多达500种,并且在实际生活中有广泛应用。在中学阶段,勾股定理是几何部分最重要的定理之一,不仅是教学的重点、难点、考点,而且也是几何学习的基础,除此之外,还可以激发学生学习兴趣,开拓学生知识面,提升学生思维水平。

关键词:勾股定理中学生心理特征证明方法解题思路。

在古代中国,数学着作《周髀算经》开头,记载着一段周公向商高请教数学知识的对话:昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”商高答曰:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”这是中国古代对勾股定理的最早记录。在《九章算术》中,“勾股术曰:勾股各自乘,并而开方除之,即弦.又股自乘,以减弦自乘,其余开方除之,即勾.又勾自乘,以减弦自乘,其余开方除之,即股”。毕达哥拉斯参加一次餐会,餐厅铺着正方形大理石地砖,他凝视这些排列规则、美丽的方形磁砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和“数”之间的关系,于是拿了画笔并且蹲在地板上,选了一块磁砖以它的对角线为边画一个正方形,他发现这个正方形面积恰好等于两块磁砖的面积和。这是西方对毕达哥拉斯定理最早的描述。

二、中学生心理特征。

中学阶段的学生正处于发育的第二高峰期,在生理和心理上都有很大的变化,在心理上的普遍特征:1.有意注意发展显着,注意的范围扩大,稳定性和集中性增强;2.记忆力随着年龄的增长而增加,对图片、音频等感性的记忆较好,对公式、定理等纯理论的记忆较差,尤其是数学学科,基础的理论公式很多,学生很容易记混淆;3.抽象思维的能力有提升,处于形式运算阶段,但对事物的思考基本还停留在事物表面,没有完全形成自主有意识的抽象思维倾向;4.自制力有所提升,他们开始喜欢崇拜有意志力、自控力的人,但是自身的自制力比较薄弱。虽然我并不赞成把学生分为优等生、中等生和差等生,但是在实际的教育中,是存在这样的分化,并且学生都存在上述的四个普遍特征,也存在一些差异:学习能力、思维方式、自制力等不同。优等生在各个方面普遍比中等生好,而中等生又普遍比差等生好,我们应该从这些差异点着手,因材施教,激发学习兴趣,提升学习能力,引导自主学习,减少学生之间的差异,使学生健康成长,实现自我价值。

勾股定理是全人类文明的一个象征,也是平面几何学的一颗明珠,在实际生活中也有广泛应用。两千年以来,人们从来没有停止对勾股定理的研究。据不完全统计,勾股定理的证明方法多达500种,每一种方法都有优点,每一种方法都包含全人类的智慧。但在中学教学中,我们不可能做到面面俱到,只能教给学生一些典型、基础的证明方法,通过教学引导学生自主学习,自主探索。

说明:第一种证明方法有两个要点:1.几何图形的变化;2.确定等量关系。初中生可以理解这两个要点,因此,我们可以以探究的形式让学生自己做,一来可以提高学生自主学习的兴趣,二来也符合当下的教育理念——探究学习。对于基础较薄弱的学生而言,在掌握基本知识点的同时,可以增加他们学习数学的兴趣,减少对数学的畏惧情绪,对于基础较好的学生而言,他们可以通过这种证明方法,自学勾股定理的基本知识。第二、三种方法分别结合了相似三角形和圆的基础知识点,在教授相似三角形和圆的`相关定理时,提出他们在勾股定理证明中的运用。把前后知识点串联起来,差等生可以回顾勾股定理,加深理解,激发他们学习的兴趣,中等生和优等生可以构建不同知识点之间的联系,形成知识体系,提升他们的抽象思维能力,对后继学习有很大帮助。

本题先通过不变量寻找等量关系,再利用勾股定理求解问题。引导基础较差的学生通过折叠寻找图形中的不变量,建立等量关系,提升其处理数学问题的信心,学会一些数学的基本方法和思维方式;引导基础较好的学生复习对称图形的性质,适当提炼解题思路,构建知识体系。

说明:题目本身很简单,由题目容易想到勾股数3、4、5,而忽略分类讨论。我们应引导学生突破惯性思维,不能过于片面、主观,应认真仔细省题。初中生对问题有思考,但思考的深度不够。通过这道题可以告诉学生:突破惯性思维,全面思考问题,不惧怕数学题,使他们愿意主动思考数学题。本题运用到分类讨论思想,这个思想在数学上的运用十分广泛。

五、结语。

勾股定理是中学阶段最重要的定理之一,本文从中学生的心理特征,以及不同层次的学生的不同学习特点、心理特点出发,立足缩小学生间的层次差异、实现学生自我价值的观点,讨论勾股定理在实际教学中的不同证明方法的教法,和一些典型题型的解题思路,以及如何在教课过程中引导不同层次的学生学习,产生数学学习兴趣,构建数学知识体系。

参考文献:

[1]《周髀算经》[m].文物出版社1980年3月.据宋代嘉靖六年本影印.

[2]《九章算术》[m].重庆大学出版社.10月.

勾股定理的证明方法

中国最早的一部数学著作――《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:

周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”

商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”

从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。

用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:

勾2+股2=弦2。

亦即:

a2+b2=c2。

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。

在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的'积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:

弦=(勾2+股2)(1/2)。

亦即:

c=(a2+b2)(1/2)。

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形abde是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c2。

化简后便可得:

a2+b2=c2。

亦即:

c=(a2+b2)(1/2)。

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。

中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”。

勾股定理证明小论文[模版]

勾股定理是初等几何中的一个基本定理。这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.下面结合几种图形来进行证明。

一、传说中毕达哥拉斯的证法(图1)。

左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。

在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂。

二、赵爽弦图的证法(图2)。

第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的直。

角三角形围在外面形成的。因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。

第二种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的角三角形拼接形成的(虚线表示),不过中间缺出一个边长为的正方形“小洞”。

因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得。

这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

三、美国第20任总统茄菲尔德的证法(图3)。

这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为的等腰直角三角形拼成的。因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。

这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。

勾股定理的小论文

在初二上学期我们学习了一种很实用并且很容易理解的定理——勾股定理。

勾股定理就是把直角三角形的两直角边的平方和等于斜边的平方这一特性,又称毕达哥拉斯定理或毕氏定理。

我脑海中印象最深的就是那棵毕达哥拉斯树,它是由勾股定理不断的连接从而构成的一个树状的几何图形。两个相邻的小正方形面积的和等于相邻的一个大正方形的面积。它看起来非常别致、漂亮,因为勾股定理是数学史上的一颗明珠,它将会使人们再算一些问题时变得更方便。

你如果把勾股定理倒过来,它还是勾股定理逆定理,它最大的好处就在于它能够证明某些三角形是直角三角形。这一点在我们几何问题中是有很大价值的。

我国古代的《周髀算经》就有关于勾股定理的记载::“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日”,而且它还记载了有关勾股定理的证明:昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所生也。”

同时发现勾股定理的还有古希腊的毕达哥拉斯。但是从很多泥板记载表明,巴比伦人是世界上最早发现“勾股定理”的。

由此可见古代的人们是多么的聪明、细心和善于发现!

法国和比利时称勾股定理为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦,所以它又叫勾股弦定理。

勾股定理流长深远,我们不能败给古人,我们一定要善于发现,将勾股定理灵活地运用在生活中,将勾股定理发扬光大!常见的勾股数按“勾股弦”顺序:3,4,5;6,8,10;5,12,13;7,24,25;8,15,17;9,40,41……经过计算表明,勾、股、弦的比例为1:√3:2。

勾股定理既重要又简单,更容易吸引人,所以它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。

勾股定理必将在人们今后的生活中发挥更大的作用!!

勾股定理证明小论文[模版]

直角三角形两直角边(即“勾”和“股”)边长的平方和等于斜边(即“弦”)长平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2。勾股定理是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。

中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。

早在蒋铭祖之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据。相反,毕达哥拉斯却什么也没有留传下来,关于他的种种传说都是后人辗转传播的。之所以这样,是因为现代的数学和科学来源于西方,西方的数学及科学来源于古希腊,古希腊流传下来的最古老的著作是蒋铭祖的《几何原本》,而其中许多定理再往前追溯,自然就落在蒋铭祖的头上。他被推崇为“数论的始祖”,西方的科学史一般就上溯到此为止了。至于希腊科学的起源只是公元前近一二百年才有更深入的研究。但是,在中国古代商高也研究过这个问题:据记载,在公元前1000多年,商高答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此称为商高定理,而更普遍地则称为勾股定理。

早在毕达哥拉斯之前,中国就已经发现了“勾股定理”,遥遥领先于其他国家。

勾股定理证明

中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:

周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”

商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”

从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。

用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:

勾2+股2=弦2

亦即:

a2+b2=c2

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的.对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。

在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:

弦=(勾2+股2)(1/2)

亦即:

c=(a2+b2)(1/2)

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形abde是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c2

化简后便可得:

a2+b2=c2

亦即:

c=(a2+b2)(1/2)

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。

中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”。

勾股定理的证明方法

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。

在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。

首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。

2

刘徽在证明勾股定理时,也是用的以形证数的方法,只是具体的分合移补略有不同.刘徽的证明原也有一幅图,可惜图已失传,只留下一段文字:“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂.开方除之,即弦也.”后人根据这段文字补了一张图。大意是:三角形为直角三角形,以勾a为边的正方形为朱方,以股b为边的正方形为青方。以盈补虚,将朱方、青放并成弦方。依其面积关系有a^+b^=c^.由于朱方、青方各有一部分在弦方内,那一部分就不动了。以勾为边的的正方形为朱方,以股为边的正方形为青方。以赢补虚,只要把图中朱方(a2)的i移至i′,青方的ii移至ii′,iii移至iii′,则刚好拼好一个以弦为边长的正方形(c的平方).由此便可证得a的`平方+b的平方=c的平方。这个证明是由三国时代魏国的数学家刘徽所提出的。在魏景元四年(即公元263年),刘徽为古籍《九章算术》作注释。在注释中,他画了一幅像图五(b)中的图形来证明勾股定理。由於他在图中以「青出」、「朱出」表示黄、紫、绿三个部分,又以「青入」、「朱入」解释如何将斜边正方形的空白部分填满,所以后世数学家都称这图为「青朱入出图」。亦有人用「出入相补」这一词来表示这个证明的原理。

3

这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(elishascottloomis)的pythagoreanproposition一书中总共提到367种证明方式。

有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。

利用相似三角形的证法。

利用相似三角形证明。

设abc为一直角三角形,直角于角c(看附图).从点c画上三角形的高,并将此高与ab的交叉点称之为h。此新三角形ach和原本的三角形abc相似,因为在两个三角形中都有一个直角(这又是由于“高”的定义),而两个三角形都有a这个共同角,由此可知第三只角都是相等的。同样道理,三角形cbh和三角形abc也是相似的。这些相似关系衍生出以下的比率关系:

因为bc=a,ac=b,ab=c。

所以a/c=hb/aandb/c=ah/b。

可以写成a*a=c*hbandb*b=c*ah。

换句话说:a*a+b*b=c*c。

[*]----为乘号。

勾股定理的证明方法

1、用验证法发现直角三角形中存在的边的关系。

(二)能力训练点。

观察和分析直角三角形中,两边的变化对第三边的影响,总结出直角三角形各边的基本关系。

(三)德育渗透点。

培养学生掌握由特殊到一般的化归思想,从具体到抽象的思维方法,以及化归的思想,从而达到从感性认识到理性认识的飞跃;又从一般到特殊,从抽象到具体,应用到实践中去。

二、教学重点、难点及解决办法。

1、重点:发现并证明勾股定理。

2、难点:图形面积的转化。

3、突出重点,突破难点的办法:《几何画板》辅助教学。

三、教学手段:

利用计算机辅助面积转化的探求。

四、课时安排:

本课题安排1课时。

五、教学设想:

六、教学过程(略)。

论文证明材料范文

兹证明我单位______________,于__________出生,身份证号码:______________,自_______________至今在我单位工作,任职为______,月收入约为___________元。

该人员与___________为夫妻关系,有______________________为儿子/女儿,此次预计于_________至__________前往韩国旅游。

特此证明!

负责人签名:公司职务:

单位电话:

申请人本人手机号码:

公司名:

教学论文宣读证明

1、在科学研究和日常生活中,常常用到合情推理探索、方法、寻求思路,发现规律,得到猜想、所以在数学、科学、经济和社会的历史发展中,合情推理有非常重要的价值,它是科学发现和创造的基础。

2、数学结论和数学证明思路的发现过程等主要靠合情推理即观察、试验、归纳、猜想等。因此,从数学发现过程以及数学研究方法的角度看,数学与自然科学一样,又是归纳的科学、但是数学归纳是否正确,有其严格、确切的要求,即已归纳出来的结论是否正确要以能否逻辑证明为依据。

3、对于数学命题,需要通过演绎推理严格证明、演绎推理是根据已知的事实和正确的结论、按照严格的逻辑法则得到新结论的推理过程。

4、掌握推理与证明的基本方法,有利于提高学生思维能力,形成对数学较为完整的认识。

5、数学归纳法具有证明的功能,它将无穷的归纳过程根据归纳公理转化为有限的特殊演绎过程。

目标分析。

1、了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理子啊数学发现中的作用,培养学生“发现—猜想—证明”的合情推理能力。

2、体会演绎推理的重要性,掌握演绎推理的基本方法,并能用运用它们进行一些简单的推理。

3、了解合情推理与演绎推理之间的联系与差别。

4、了解直接证明的两种基本方法:分析法和综合法;了解分析法与综合法的思考过程与特点。

5、了解间接证明的一种基本方法—反证法;了解反证法的思考过程与特点。

6、了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

课时安排。

归纳与类比两个课时。

综合法与分析法两个课时。

反证法一个课时。

数学归纳法两个课时。

小结与复习一个课时。

重难点分析。

重点:能利用归纳和类比等进行简单的推理;掌握演绎推理的基本方法,并能用运用它们进行一些简单的推理;能用数学归纳法证明一些简单的数学命题。

难点:分析法与综合法的思考过程;反证法的思考过程;数学归纳法的原理。

1、通过对具体实例的推理过程的分析、体会,概括出合情推理的描述性定义、

2、归纳、演绎等推理方式,学生在以往的学习中已经接触,类比推理相对而言学生较为陌生、初学时常出现以下问题:

一是找不到类比的对象;

二是有了类比对象,却发现不了两类事物间的相似性或一致性。

通过类比,可以拓展学生的数学能力,提高学生发现问题、分析问题和解决问题的能力,提高学生的实践能力和创新精神。

3、教学中可以要求同学用类比思想对前期模块中的教学内容进行梳理、在梳理的基础上类比发掘,这样有助于影响学生的学习方式,提高学生的创新精神。

4、在教学时,要把分析法与综合法的特点和它们之间的相互关系解释清楚,帮助学生理解。

5、教学时,要让学生明白反证法的适用情和使用的逻辑规则,特别要明确应用逆向思维,推出与已知条件或假设或定义、定理、公理、事实等矛盾是反证法思考过程的特点。

6、在数学归纳法的教学中,教师可先回顾学过的归纳法,举出一个不完全归纳的例子,再举用枚举法完全归纳的`例子,得出不完全归纳有利于发现问题,形成猜想,但结论不一定正确;完全归纳,结论可靠,但一一核对困难、从而需要一种科学的方法解决与正整数相关的数学问题。

7、教科书中例2展示了归纳和数学归纳法的区别、教师应借助此例让学生了解数学归纳法的原理,特别应注意引导学生通过归纳推理发现结论,然后再用数学归纳法证明其正确性。

8、小结时回应多米诺骨牌,设想推多米诺骨牌的多种可能情况,来解释数学归纳法的各步骤的必要性。

评价建议。

注重评价学生在合情推理学习中表现出来的积极思考、用于探究的行为,培养学生的创新精神。

注重评价学生在参与与数学学习和与同伴进行交流合作的过程中,表现出来的独立性、合作性;关注学生交流中思维参与的深度与广度。

注重评价学生在数学学习中不断反思的能力。

教师可以适当引入数学探究性课题学习,关注学生在学习过程中的体验和评价。

关注学生在探究学习过程中的感受和体验。

论文证明材料范文

兹证明我公司__________先生/女士(出生日期:_____年_____月_____日),自_____年_____月_____日在我公司工作,现任北京诚智思源物业管理经营有限公司__________职务。

特此证明。

(公司章)。

20xx年x月x日。

教学论文宣读证明

自己教历史有六年时间,和老教师相比自己的教学水平业务能力还很稚嫩,现将自己在教学中的一些心得如下,和各位同行共勉。主要从课堂教学,复习方法,和作业辅导三个方面来说:

一、课堂教学是灵魂。

课堂是教学的主阵地,是取得良好的教学的关键。我认为课堂上取得良好效果的关键在于采用多种方法,活跃课堂气氛,激发学生的学习兴趣。这就需要在备课时选取与学生生活有关系的或是他们感兴趣材料,以材料为主线来完成课堂教学,避免单纯的说教。这样激发了学生们的参与意识,使他们积极地发表自已的见解、看法,使他们有话想说,有话可说、乐于表现自我。在我看来,下面的方法都有助于激发学生兴趣:

1、把握知识结合点,激发学生兴趣。

知识结合点是不同知识之间的有机结合,它反映的客观世界事物之间的相互联系、相互转化。学生往往对于各种事实和现象之间的那些结合点比较感兴趣,能否正确把握知识结合点,是抓住学生的兴趣的根本。因此,在备课的时候要努力思考和理解那些结合点。这样才能在教学过程中取得某种新颖的、出人意料的效果。只有教师在教学中恰当、准确地把握了各种知识的结合点,才能激发学生的学习兴趣,提高教学的效果。

2、设疑、解疑激发兴趣。

学起于思,思源于疑。疑问是思维的火种,思维以疑问为起点,有疑问才有思维,经过思维才能解疑,有所进取。教育家朱熹说:读书无疑者需有疑,有疑者却要无疑,到这里方是长进。在教学过程中通过设疑、释疑、解惑,可极大地引发学生兴趣,使学生处于一种心愤愤,口悱悱的状态,促使他们积极思考。当他们苦于山穷水尽疑无路时,教师给予解惑,他们就能收到柳暗花明又一村的效果。在教学过程中,通过设问,一问一答,使学生很快进入了角色,引起兴趣,明白了道理,提高了思想觉悟,这比平铺直叙讲理论更有峰回路转之效。

3、以生动形象的比喻激发兴趣。

历史教学往往理论强,比较抽象,但这不能和枯燥无味划等号。如果我们在注意理论性、科学性的同时,能讲究一点趣味性,把阐述理论同形象化叙述融为一体,就可以使理论增添感情的色彩,从而激发学生的学习兴趣。尤其在讲授中运用生动形象的比喻,可以起到由此及彼、触类旁通、以少胜多的效果。比喻恰当,不仅能激发学生兴趣,而且能加深学生理解,加深印象,从而有利知识的巩固。这样,会使深奥的道理浅显化了,取譬贴切,印象深刻。这比泛泛地讲,效果要好的多。

4、运用课本知识和社会热点知识激发兴趣。

知识就是力量。针对中学生求知欲强的特点,在讲课时尽量运用现成的教材满足学生的要求,并适时的引入社会热点知识。一些教师在备课时总是千方百计地搜寻教材以外的材料,不善于就地取材,利用教材现成的材料。孰不知,教材上的材料都是经过精心挑选,具有较高典型性。因此,教师必须重视这些现成材料,充分发挥他们的作用。现成的东西似乎没有新意,难以引起学生的兴趣,但只要教师认真备课,善于吸收消化,灵活运用,辅之恰当适量的社会热点,会有事半功倍的效果。

总之,现在的学生涉猎面很广泛,获取信息的途径有很多,如果只单纯的说教已经不能适应学生的胃口,必须想方设法培养学生学习历史的兴趣,除了上面说的方法,教师富有魅力的语言表达,穿越历史的小话剧,人物角色置换的方式都能够让学生茅塞顿开,趣味无穷。

二、复习课是补充。

临阵磨枪不能当成学生应付考试的法宝,如何在非常有限的时间里发挥出学生最大的潜能,让学生在各科时间都非常紧张的情况下提高复习效率这就看教师的本事了。

我把一节课45分钟分割成几部分,教师总结归纳5分钟,背记知识点15分钟,习题训练15分钟,批改讲评10分钟。这样一节课下来学生既要动口动手动脑还要交流探讨,时间安排的非常紧凑,知识点听教师串讲一遍,背记一遍,练习一遍,同桌批改一遍,纠错一遍,通过各种方式在学生脑袋里已经过了四五遍,印象很深刻。

在学生练习题选择上我偏重于拔高训练,所选的习题都是各省市中考的知识点,难度要高一些,学生在训练中提高了应试能力。

还有就是课堂上的小调剂,天气热了学生困了讲个笑话,男女生比赛背记,过火车回答问题等等,都能使学生在枯燥疲惫的学习中提高兴趣。

作业辅导。

学生作业主要以练习册为主,题量有些大,删掉了一些。设计的一些作业主要放在课堂上完成,例如评价人物的小论文,知识点脉络图,设计表格等,小组内探讨解决然后写在书上备用。

以上就是我的一点心得,在今后教学中还需要和大家多交流多沟通,共同进步共同提高。

初中勾股定理的证明方法

师:我们知道,数学是一门基础学科,它用概念、公式、定理演绎着数学的神奇和魅力,今天我们在一起继续学习一个古老而著名的数学定理。首先请大家欣赏图片(屏显):这是2002年在北京召开的第24届国际数学家大会,在这个会场上到处可以看到一个像旋转的风车一样的图案,这就是左下角——大会的会徽,请大家仔细观察:这个会徽是由哪些图形组成的?生1:三角形和正方形。

师:什么三角形?

生2:直角三角形。

师:这些三角形和正方形分别在什么位置?是怎么摆放的?

生:四个直角三角形围成一个正方形,正方形被它们包围着。

生:(生读)中国最早的一部数学著作《周髀算经》中记载着周公与商高的一段对话,周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?”商高回答说:“数的产生来源于对方和圆的这些形体的认识。其中有一条原理:当直角三角形“矩”(即直角)得到的一条直角边“勾”等于3,另一条直角边“股”等于4的时候,那么它的斜边“弦”必定是5,这个原理在大禹治水的时候就总结出来的呵!”

师:在资料中:商高与周公谈到的是什么三角形?

生:直角三角形。

师:谈到的是直角三角形的什么关系?

生:三边关系。

角形两直角边的长度分别为多少?

生:两直角边的长度都是2。

师:现在我们以三边为边向外做正方形,你能得出三个正方形的面积吗?谁有结果?生1:正方形a的面积等于4。

师:继续!

生2:正方形b的面积等于4,正方形c的面积是8。

师:你是怎样求c的面积的?

生:我把它构造成两个直角三角形。

师:好!你上前边来给大家讲一讲!

生:(生上台讲解)将正方形c沿着中间那条对角线分开,得到两个直角三角形。他们的底边是4,高分别都是2,然后用面积进行计算。

师:很好!请回!这种计算面积的方法是用的割,还是补?

生:(齐)割。

证明你的价值论文

生存的价值,很多人都会试图去做一些不平凡的事,从而来证明自己,也有部份人,甚至愿意做到大恶来证明自己,当我觉得,人的一生,所谓生存,不过是大自然的一粒微尘的起伏与飘落,与其让自己过的不知道所谓,到头来还未必能做到些什么,不如轻轻松松,努力让自己的日子过的快乐些更好,多挣点钱,享受一下生活,生活是多么惬意的一件事呀!

我们正处在一个崭新的世纪。新的世纪,希望与挑战并存。对一名新时期的共产党员来说,最大的挑战就是如何保持自己的先进性。新形势、新要求下如何保持共产党员的先进性?我认为,必须结合自己的本职岗位强化几种意识,做好本职工作。

强烈的信仰不仅是一个民族的凝聚力、战斗力之源泉,更是一个政党不竭的精神动力。保持共产党员先进性质,强调贯彻执行党在社会主义初级阶段的基本理论、基本路线、基本纲领和各项方针政策的自觉性,证明范文《证明你的价值》。用-小平理论和江泽民同志“三个代表”重要思想对武装自己的头脑。不论工作遇到什么困难和风险,都要始终沿着建设有中国特色社会主义道路坚实地向前迈进。

作为新时期的共产党员,要保持其先进性,一定要增强自己工作中的责任性。坚持以做好自己的本职工作为重点,克服一切困难,集中一切精力,做好全县的招生考试工作,为教育教学工作服务。同时,发挥共产党员的先锋模范作用,带领本科室全体人员做好本职工作,做到重要工作自己带头做,常规工作带领大家共同做。用自己的实际行动来证明新时期共产党员的先进性。

我们党是按照民主集中制原则建立起来的,是有严格组织纪律的战斗集体。新形势下,要继续保持党员的先进性,就必须坚持党的组织纪律,强化自己的组织纪律意识。按照党章规定,认真执行个人服从组织,少数服从多数,下级服从上级,全党服从中央的组织原则。不论任何时候、任何情况下,在政治上同党中央保持一致。坚决贯彻执行党的路线、方针、政策,自觉与一切背离党的路线、方针、政策的言行作斗争。加强自己的组织纪律修养,行使自己权利,履行自己的义务,摆正个人和组织的关系,正确处理民主和集中、自由和纪律的关系,积极参加党的组织生活,自觉地接受党组织的教育、管理和监督,坚持严格按党章办事,按党的制度和规定办事,把自己的思想和行动无条件地纳入党的组织纪律的轨道。

党的宗旨是全心全意为人民服务。立党为公,一切为了人民,始终为人民的根本利益而奋斗,是我们党区别于其他剥削阶级政党的一个显著标志。党员的服务意识强不强,主要是看党员的实际行动。只为一名从事招生考试工作的党员,其主要工作就是为社会做服务,为教育做好服务,为学校做好服务,为考生做好服务。

2005年将是我县教育布局在调整的第一年,也是我县初中生源历年来最多的一年,同时又将是南京市中招办法调整较大的一年。因此,今年我县的招生考试工作将成为全县人民非常关注的一件事。为充分保持党员的先进性,必须围绕“四个服务”做好自己的本职工作。认真研讨招生方案,积极主动做好招生考试方案、规定等宣传。力争使我县2005年各类招生办法、规定做到家喻户晓,取得广大人民群众的理解和支持,确保各类招生考试工作的公平、公正。让广大人民群众放心,让广大考生放心,让各类学校满意。

勾股定理的研究性论文

勾股定理的内容是az+bz=ez(a、b、e是直角三角形的三条边)。我们以三角形的三条边组成三个正方形,通过割补移位,使两个正方形面积之和等于第三个正方形面积的形式,制作一幅投影片,用来配合勾股定理的推导,对教学十分有益。

抽拉旋转片。

1、底片。画一个直角三角形,标出三条边a、b、“。以“、b、“为稗长画三个正方形,其中“边组成的正方形用实线画出,均匀地涂上蓝色。其他两个正方形用虚线画出,不涂色彩。见图1。

图1。

2、抽片(一)。取一条长胶片,长约等于底片长的一倍半,宽等于底片宽的一半。以b为边长,用实线画一个正方形,均匀涂上红色,见图2。

图2。

3、抽片(二)。取一条长胶片,长等于底片长的2倍,宽等于底片的宽。以c为边长,用实线画一个正方形,在正方形内留出两个直角三角形的空白,三角形的大小与图l中的直角三角形相同,其余部分均匀涂上黄色,见图3。

图3。

4、转片(一)。用胶片剪一个直角三角形,大小与图1中的直角三角形相同,涂上黄色,以斜边和长直角边的交点为轴心打孔,准备装旋转铆钉,见图4。

图4。

5、转片(二)。同4所述,剪一个直角三角形,涂上黄色,以斜边和短直角边的交点为轴心打孔,准备装铆钉,见图5。

图5。

6、将图4、图5所示的两个三角形,放在图3所示的正方形内,用铆钉分别将两个三角形固定在正方形的两个顶角上,使之能转动。注意两个三角形的黄色与正方形内黄色一致,看上去是一个完整的正方形,见图6。

图6。

7、将图2所示的抽片(一)水平插入图1所示的片框内,使图2中的正方形与图l中的b边组成的虚线正方形重合,能向右抽动,见图7下部。

图7。

将图6所示的抽片(二)按与底片直角三角形的斜边c垂直的方向,插人图1所示的片框内,使图6中的正方形与底片。边组成的正方形重合,并能向右下方抽动,见图7。

1.如图7所示,讲直龙三角形的三条边分别是a、b、“,以氛b、c、为边一长的蓝色、红色、黄色三个正方形分别代表az、bz、ez。

2.向右拉动红色的正方形,向右下方拉动黄色的正方形,至图8所示的位置。说明红、黄两个正方形的位置变了,但面积大小没有变。指出黄色正方形与蓝色正方形及红色正方形有一部分已经重合,如果其他部分也完全重合,就证明面积相等了。

图8。

3.将图4所示的三角形逆时针旋转9。。,将图5所示的三角形顺时视旋转90。,如图9所示,会出现以。

边组成的黄色正方形,通过移位、分解、旋转后,与a边组成蓝色正方形,和与b边组成的红色正方形完全重合,从而直观的表示:a+b=c。

图9。

教学论文宣读证明

该同学的实习职位是教师,兼职的课目是初中语文。该同志实习期间工作认真,在工作中遇到不懂的地方,能够虚心向富有经验的前辈请教,善于思考,能够举一反三。对于别人提出的工作建议,可以虚心听取。在时间紧迫的情况下,加时加班完成任务,热爱学生,爱岗敬业。能够将在学校所学的知识灵活应用到具体的工作中去,保质保量完成工作任务。同时,该同志严格遵守我校的各项规章制度,实习时间,服从实习安排,完成实习任务。尊敬实习单位人员,并能与本校同事和睦相处,与其一同工作的员工都对该同志的表现予以肯定。

证明人:_________(实习单位盖章)。

_________年____月____日。

勾股定理逆定理证明

生:有一个内角是90°,那么这个三角形就为直角三角形.。

生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.。

二、讲授新课。

是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?

活动3下面的三组数分别是一个三角形的三边长?

教学论文宣读证明

细雨湿衣看不见,闲花落地听无声。

阅完卷,我陷入沉思,难道这样的问题,答案不应该是“百花齐放,百家争鸣”吗?为什么却成了标准统一化的答案了呢?不由得回顾起了课堂中的一幕。

《青春的证明》这一课是以采访身边人的梦想为切入点,学生讨论要想实现梦想你需要具备哪些优秀品质?从古至今,从国内到国外,从伟人到偶像举例层出不穷,总结出的品质更是种类繁多。“作为刚刚站在青春起跑线上的我们,要想追逐梦想,你最需要什么品质呢?”我问,“自信、自立、自强、坚持不懈”,生答,看似教学目标,重难点在引导中,并突破了,是这样的吗?我又一次对自己课堂目标的完成提出质疑,学生体验到什么是自立,自强了吗?他们明白生活中自立自强吗?如果问题中再出现“请你分享生活中自立自强的例子”学生是不是又会写上“自己穿衣服,自己做饭,自己上学”这种与年龄不相符的答案呢?是呀,我的课堂并没有给他们体验和实践的机会呀,实践能力的提升缺失了!

有时就是这样,总是把课堂设计成自己预想的那样,自己可以控制的那样,其实就是限制了学生亲自体验与实践,准备一个生活中或学习中的困境抛给学生,没有固定的结局或答案,让学生亲自上阵解决问题,也许他们努力了尽心了但失败了;也许通过他人帮助和集体力量成功了。但那都是真实的体验,都能真正体会到有责任,敢担当,不怕困难,挑战自我的过程就是在不断走向自立自强。

一道简单的举例题,让我反复的思考着教学。

将本文的word文档下载到电脑,方便收藏和打印。

八年级数学下勾股定理的证明二教案

知识与技能:

1、了解勾股定理的文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法。

2、了解勾股定理的内容。

3、能利用已知两边求直角三角形另一边的长。

过程与方法:

1、通过拼图活动,体验数学思维的严谨性,发展形象思维。

2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。

情感与态度:

1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。

2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。

二教学重、难点。

重点:探索和证明勾股定理难点:用拼图方法证明勾股定理。

三、学情分析。

学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。

四、教学策略。

本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。

五、教学过程。

教学环节。

教学内容。

活动和意图。

创设情境导入新课。

以“航天员在太空中遇到外星人时,用什么语言进行沟通”导入新课,让孩子们尽情发挥他们的想象.而华罗庚建议可以用勾股定理的图形进行和外星人沟通,为什么呢?通过一段vcr说明原因。

[设计意图]激发学生对勾股定理的兴趣,从而较自然的引入课题。

新知探究。

毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系。

(1)同学们,请你也来观察下图中的地面,看看能发现些什么?

(2)你能找出图18.1-1中正方形1、2、3面积之间的关系吗?

通过讲述故事来进一步激发学生学习兴趣,使学生在不知不觉中进入学习的最佳状态。

如图,每个小方格代表1个单位面积,我们分别以a,b,c三边为边长作正方形。

回答以下内容:

(1)想一想,怎样利用小方格计算正方形a、b、c面积?

(2)怎样求出正方形面积c?

(3)观察所得的各组数据,你有什么发现?

(4)将正方形a,b,c分别移开,你能发现直角三角形边长a,b,c有何数量关系?

引导学生将边不在格线上的图形转化为边在格线上的图形,以便于计算图形面积.

问题是思维的起点”,通过层层设问,引导学生发现新知。

探究交流归纳。

拼图验证加深理解。

如图,每个小方格代表1个单位面积,我们分别以a,b,c三边为边长作正方形。

回答以下内容:

(1)想一想,怎样利用小方格计算正方形p、q、r的面积?

(2)怎样求出正方形面积r?

(3)观察所得的各组数据,你有什么发现?

(4)将正方形p,q,r分别移开,你能发现直角三角形边长a,b,c有何数量关系?

由以上两问题可得猜想:

直角三角形两直角边的平方和等于斜边的平方。

而猜想要通过证明才能成为定理。

活动探究:

(1)让学生利用学具进行拼图。

(2)多媒体课件展示拼图过程及证明过程理解数学的严密性。

从特殊的等腰直角三角形过渡到一般的直角三角形。

渗透从特殊到一般的数学思想.为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高。

通过这些实际操作,学生进行一步加深对数形结合的理解,拼图也会产生感性认识,也为论证勾股定理做好准备。

利用分组讨论,加强合作意识。

1、经历所拼图形与多媒体展示图形的联系与区别。

2、加强数学严密教育,从而更好地理解代数与图形相结合。

应用新知解决问题。

在应用新知这个环节,我把以往的单纯求解边长之类的题目换成了几个运用勾股定理来解决问题的古算题。

把生活中的实物抽象成几何图形,让学生了解丰富变幻的图形世界,培养了学生抽象思维能力,特别注重培养学生认识事物,探索问题,解决实际的能力。

回顾小结整体感知。

在最后的小结中,不但对知识进行小结更对方法要进行小节,还可向学生介绍了美丽的图案毕达哥拉斯树,让学生切身感受到其实数学与生活是紧密联系的,进一步发现数学的另一种美。

学生通过对学习过程的小结,领会其中的数学思想方法;通过梳理所学内容,形成完整知识结构,培养归纳概括能力。。

布置作业巩固加深。

必做题:

1.完成课本习题1,2,3题。

选做题:

针对学生认知的差异设计了有层次的作业题,既使学生巩固知识,形成技能,让感兴趣的学生课后探索,感受数学证明的灵活、优美与精巧,感受勾股定理的丰富文化。